
Serializable Isolation for Snapshot Databases

Michael J. Cahill
∗

mjc@it.usyd.edu.au
Uwe Röhm

roehm@it.usyd.edu.au
Alan D. Fekete

fekete@it.usyd.edu.au
School of Information Technologies

University of Sydney
NSW 2006 Australia

ABSTRACT
Many popular database management systems offer snap-
shot isolation rather than full serializability. There are well-
known anomalies permitted by snapshot isolation that can
lead to violations of data consistency by interleaving trans-
actions that individually maintain consistency. Until now,
the only way to prevent these anomalies was to modify the
applications by introducing artificial locking or update con-
flicts, following careful analysis of conflicts between all pairs
of transactions.
This paper describes a modification to the concurrency con-
trol algorithm of a database management system that auto-
matically detects and prevents snapshot isolation anomalies
at runtime for arbitrary applications, thus providing serial-
izable isolation. The new algorithm preserves the proper-
ties that make snapshot isolation attractive, including that
readers do not block writers and vice versa. An implementa-
tion and performance study of the algorithm are described,
showing that the throughput approaches that of snapshot
isolation in most cases.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Transaction
processing

General Terms
Algorithms, Performance, Reliability

Keywords
Multiversion Concurrency Control, Serializability Theory,
Snapshot Isolation

∗The author is also an employee of Oracle Corporation. This
work was done while at the University of Sydney.

c©ACM, (2008). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the Proceedings of the 2008 ACM
SIGMOD international conference on management of data, pages 729-738
http://doi.acm.org/10.1145/1376616.1376690

1. INTRODUCTION
Serializability is an important property when transactions

execute because it ensures that integrity constraints are main-
tained even if those constraints are not explicitly declared to
the DBMS. If a DBMS enforces that all executions are seri-
alizable, then developers do not need to worry that inconsis-
tencies in the data might appear as artifacts of concurrency
or failure. It is well-known how to use strict two-phase lock-
ing (and various enhancements such as escrow locking and
multigranularity locking) to control concurrency so that se-
rializable executions are produced [11]. Some other concur-
rency control algorithms are known that ensure serializable
execution, but these have not been adopted in practice, be-
cause they usually perform worse than a well-engineered im-
plementation of strict two-phase locking (S2PL).

Snapshot isolation (SI) [3] is an alternative approach to
concurrency control, taking advantage of multiple versions
of each data item. In SI, a transaction T sees the database
state as produced by all the transactions that committed be-
fore T starts, but no effects are seen from transactions that
overlap with T. This means that SI never suffers from Incon-
sistent Reads. In a DBMS using SI for concurrency control,
reads are never delayed because of concurrent transactions’
writes, nor do reads cause delays in a writing transaction.
In order to prevent Lost Update anomalies, SI does abort
a transaction T when a concurrent transaction commits a
modification to an item that T wishes to update. This is
called the “First-Committer-Wins” rule.

Despite the nice properties of SI, it has been known since
SI was formalized in [3] that SI allows non-serializable ex-
ecutions. In particular, it is possible for an SI-based con-
currency control to interleave some transactions, where each
transaction preserves an integrity constraint when run alone,
but where the final state after the interleaved execution
does not satisfy the constraint. This occurs when concur-
rent transactions modify different items that are related by
a constraint, and it is called the Write Skew anomaly.

Example 1: Suppose that a table Duties(DoctorId, Shift,
Status) represents the status (“on duty”or“reserve”) for each
doctor during each work shift. An undeclared invariant is
that, in every shift, there must be at least one doctor on
duty. A parametrized application program that changes a
doctor D on shift S to “reserve” status, can be written as in
Figure 1.

This program is consistent, that is, it takes the database
from a state where the integrity constraint holds to another
state where the integrity constraint holds. However, sup-
pose there are exactly two doctors D1 and D2 who are on

http://doi.acm.org/10.1145/1376616.1376690

BEGIN TRANSACTION

UPDATE Duties SET Status = ’reserve’

WHERE DoctorId = :D

AND Shift = :S

AND Status = ’on duty’

SELECT COUNT(DISTINCT DoctorId) INTO tmp

FROM Duties

WHERE Shift = :S

AND Status = ’on duty’

IF (tmp = 0) THEN ROLLBACK ELSE COMMIT

Figure 1: Example parameterized application ex-
hibiting write skew

duty in shift S. If we run two concurrent transactions, which
run this program for parameters (D1, S) and (D2, S) respec-
tively, we see that using SI as concurrency control will allow
both to commit (as each will see the other doctor’s status
for shift S as still unchanged, at “on duty”). However, the
final database state has no doctor on duty in shift S, violat-
ing the integrity constraint.

Despite the possibility of corrupting the state of the database,
SI has become popular with DBMS vendors. It often gives
much higher throughput than strict two-phase locking, es-
pecially in read-heavy workloads, and it also provides users
with transaction semantics that are easy to understand. Many
popular and commercially important database engines pro-
vide SI, and some in fact use SI when serializable isolation
is requested [13].

Because SI allows data corruption, and is so common,
there has been a body of work on how to ensure serializable
executions when running with SI as concurrency control.
The main techniques proposed so far [9, 8, 14] depend on
doing a design-time static analysis of the application code,
and then modifying the application if necessary in order to
avoid the SI anomalies. For example, [9] shows how one can
introduce write-write conflicts into the application, so that
all executions will be serializable even on SI.

Making SI serializable using static analysis has a number
of limitations. It relies on an education campaign so that
application developers are aware of SI anomalies, and it is
unable to cope with ad-hoc transactions. In addition, this
must be a continual activity as an application evolves: the
analysis requires the global graph of transaction conflicts,
so every minor change in the application requires renewed
analysis, and perhaps additional changes (even in programs
that were not altered). In this paper, we instead focus on
guaranteeing serializability for every execution of arbitrary
transactions, while still having the attractive properties of
SI, in particular much better performance than is allowed
by strict two-phase locking.

1.1 Contributions
We propose a new concurrency control algorithm, called

Serializable Snapshot Isolation, with the following innova-
tive combination of properties:

• The concurrency control algorithm ensures that every
execution is serializable, no matter what application
programs run.

• The algorithm never delays a read operation; nor do
readers cause delays in concurrent writes.

• Under a range of conditions, the overall throughput is
close to that allowed by SI, and much better than that
of strict two-phase locking.

• The algorithm is easily implemented by small modifi-
cations to a system that provides SI.

We have made a prototype implementation of the algo-
rithm in the open source data management product Oracle
Berkeley DB [16], and we evaluate the performance of this
implementation compared to the product’s implementations
of Strict Two-Phase Locking (S2PL) and SI.

The key idea of our algorithm is to detect, at runtime,
distinctive conflict patterns that must occur in every non-
serializable execution under SI, and abort one of the trans-
actions involved. This is similar to the way serialization
graph testing works, however our algorithm does not operate
purely as a certification at commit-time, but rather aborts
transactions as soon as the problem is discovered; also, our
test does not require any cycle-tracing in a graph, but can be
performed by considering conflicts between pairs of transac-
tions, and a small amount of information which is kept for
each of them. Our algorithm is also similar to optimistic con-
currency control [15] but differs in that it only aborts a trans-
action when a pair of consecutive conflict edges are found,
which is characteristic of SI anomalies. This should lead
to significantly fewer aborts than optimistic techniques that
abort when any single conflict edge is detected. Our detec-
tion is conservative, so it does prevent every non-serializable
execution, but it may sometimes abort transactions unnec-
essarily.

The remainder of the paper is structured as follows: in
Section 2 we give an introduction to snapshot isolation and
current approaches to ensuring serializable isolation with SI;
in Section 3 we describe the new Serializable SI algorithm; in
Section 4 we describe the implementation in Oracle Berkeley
DB and in Section 5 we evaluate its performance. Section 6
concludes.

2. BACKGROUND

2.1 Snapshot Isolation
SI is a concurrency control approach that uses multiple

versions of data to provide non-blocking reads. When a
transaction T starts executing, it gets a conceptual times-
tamp start-time(T); whenever T reads a data item x, it does
not necessarily see the latest value written to T; instead T
sees the version of x which was produced by the last to com-
mit among the transactions that committed before T started
and also modified x (there is one exception to this: if T has
itself modified x, it sees its own version). Thus, T appears to
execute against a snapshot of the database, which contains
the last committed version of each item at the time when T
starts.

SI also enforces an additional restriction on execution,
called the “First-Committer-Wins” rule: it is not possible to
have two concurrent transactions which both commit and
both modify the same data item. In practice, implementa-
tions of SI usually prevent a transaction from modifying an
item if a concurrent transaction has already modified it.

T1 T2rw(y)
rw(x)

Figure 2: Serialization graph for transactions ex-
hibiting write skew

SI was introduced in the research literature in [3], and it
has been implemented by the Oracle RDBMS, PostgreSQL,
SQL Server 2005, and Oracle Berkeley DB. It provides signif-
icant performance improvements over serializability imple-
mented with two-phase locking (S2PL) and it avoids many
of the well-known isolation anomalies such as Lost Update
or Inconsistent Read. In some systems that do not imple-
ment S2PL, including the Oracle RDBMS and PostgreSQL,
SI is provided when serializable isolation is requested.

2.2 Write Skew
As noted in [3], SI does not guarantee that all executions

will be serializable, and it can allow corruption of the data
through interleaving between concurrent transactions which
individually preserve the consistency of the data. Here is an
execution that can occur under SI:

r1(x=50,y=50) r2(x=50,y=50) w1(x=-20) w2(y=-30) c1 c2

This sequence of operations represents an interleaving of
two transactions, T1 and T2, withdrawing money from bank
accounts x and y, respectively. Each of the transactions be-
gins when the accounts each contain $50, and each trans-
action in isolation maintains the constraint that x + y > 0.
However, the interleaving results in x + y = −50, so consis-
tency has been violated. This type of anomaly is called a
write skew.

We can understand these situations using a multiversion
serialization graph (MVSG). There are a number of defini-
tions of this in the literature, because the general case is
made complicated by uncertainty over the order of versions
(which indeed renders it NP-Hard to check for serializability
of a multiversion schedule). For example, there are defini-
tions in [5, 12, 17, 1].

With snapshot isolation, the definitions of the serializa-
tion graph become much simpler, as versions of an item
x are ordered according to the temporal sequence of the
transactions that created those versions (note that First-
Committer-Wins ensures that among two transactions that
produce versions of x, one will commit before the other
starts). In the MVSG, we put an edge from one commit-
ted transaction T1 to another committed transaction T2 in
the following situations: T1 produces a version of x, and T2
produces a later version of x (this is a ww-dependency); T1
produces a version of x, and T2 reads this (or a later) version
of x (this is a wr-dependency); T1 reads a version of x, and
T2 produces a later version of x (this is a rw-dependency).
In Figure 2 we show the MVSG for the history with write
skew, discussed above. In drawing our MVSG, we will fol-
low the notation introduced in [1], and use a dashed edge to
indicate a rw-dependency.

TN

T0
rw(y) T1rw(x)

Figure 3: Generalized dangerous structure in the
MVSG

As usual in transaction theory, the absence of a cycle in
the MVSG proves that the history is serializable. Thus it be-
comes important to understand what sorts of MVSG can oc-
cur in histories of a system using SI for concurrency control.
Adya [1] showed that any cycle produced by SI has two rw-
dependency edges. This was extended by Fekete et al in [9],
which showed that any cycle must have two rw-dependency
edges that occur consecutively, and further, each of these
edges is between two concurrent transactions.

We adopt some terminology from [9], and call an rw-
dependency between concurrent transactions a vulnerable
edge; we call the situation where two consecutive vulnerable
edges occur in a cycle as a dangerous structure. It is illus-
trated in Fig 3. We refer to the transaction at the junction
of the two consecutive vulnerable edges as a pivot transac-
tion. The theory of [9] shows that there is a pivot in any
non-serializable execution allowed by SI.

We take an interesting example from [10] to illustrate how
a dangerous structure may occur at runtime. Consider the
following three transactions:

T0: r(y) w(x)

T1: w(y) w(z)

TN: r(x) r(z)

These three transactions can interleave such that TN, a
read-only transaction, sees a state that could never have ex-
isted in the database had T0 and T1 executed serially. If
TN is omitted, T0 and T1 are serializable because there is
only a single anti-dependency from T0 to T1.

Two of the possible non-serializable interleavings of these
three transactions are illustrated in Figure 4. These dia-
grams should be read from left to right; the arrows indicate
the rw-dependencies between transactions. In Figure 4(a),
both reads occur after the writes. In Figure 4(b), TN reads
x before it is written by T0.

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1 rN(x) rN(z)bN cN

(a) Pivot commits last

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1 rN(x) rN(z)bN cN

(b) Reader commits last

Figure 4: SI anomalies at runtime

Notice that there are no constraints on the commit order:
when an anomaly occurs under SI, the transactions can go
on to commit in any order. This observation is one of the
challenges that an algorithm to detect SI anomalies at run-
time must overcome: we cannot always know when a trans-
action commits whether it will have consecutive vulnerable
edges.

2.3 Phantoms
Throughout the discussion so far, we have followed typi-

cal concurrency control theory and assumed that a transac-
tion is a sequence of reads and writes on named data items.
In general, a relational database engine must also deal with
predicate operations (such as SQL “where” clauses). These
mean that a concurrency control algorithm must also con-
sider phantoms, where an item created or deleted in one
transaction would change the result of a predicate operation
in a concurrent transaction if the two transactions executed
serially. The solution used in traditional two-phase locking
is multigranularity locking [6], where a predicate operation
takes intention locks on larger units, such as pages or ta-
bles, to prevent insertion of records that might match the
predicate.

2.4 Related Work
An extensive line of research has considered, not the seri-

alizability of particular executions allowed by SI, but rather
the question of whether a given set of application programs
is guaranteed to generate serializable executions when run
on a system with SI as the concurrency control mechanism.
This problem was addressed in [7] and the techniques were
refined in [9]. The key to this work is to consider a static
analysis of the possible conflicts between application pro-
grams. Thus a static dependency graph, or SDG, is drawn,
with a edge from program P1 to P2, if there can be an ex-
ecution where P1 generates a transaction T1, P2 generates
T2, and there is a dependency edge from T1 to T2. It was
shown how a dangerous structure in the MVSG can be re-
lated to a similar structure in the SDG, and this justified the
intuition of experts, who had previously decided that every
execution of the TPC-C benchmark [20] is serializable on a
platform using SI. As well as showing how to prove that cer-
tain programs generate only serializable executions, [9] pro-
posed that one could modify transaction programs so that
they fall into this class. The modifications typically involve
introducing extra write-write conflicts, between transaction
programs that might give rise to transactions joined by a
vulnerable edge within a dangerous structure.

The theory of [9] was extended in [8] to the case where
some transactions use SI and others use S2PL (as is possi-
ble with Microsoft SQL Server 2005 or Oracle Berkeley DB).
Performance studies [2] indicate that modifying applications
to ensure serializability under SI can be done without sig-
nificant cost when the appropriate technique is used.

In [14], a system is described to automate the analysis of
program conflicts using syntactic features of program texts,
such as the names of the columns accessed in each state-
ment. One important finding of their work is that snapshot
isolation anomalies do exist in applications developed using
tools and techniques that are common throughout the soft-
ware industry.

An alternative approach to ensuring correctness when run-
ning on platforms with SI is in [4], where conditions are given

to ensure all executions preserve given integrity constraints,
without necessarily being serializable.

Others have previously suggested ways to alter the SI con-
currency control in order to avoid non-serializable execu-
tions at run-time. Proposals related to certification through
serialization graph testing are in [18] and [21]. These sug-
gestions have not focused on feasibility of implementation
within a DBMS. In particular, the space required to repre-
sent complete conflict graphs and the overhead required to
maintain them may be prohibitive.

3. SERIALIZABLE SNAPSHOT ISOLATION
The essence of our new concurrency control algorithm is to

allow standard SI to operate, but to add some book-keeping
so we can dynamically detect cases where a non-serializable
execution could occur, and then we abort one of the transac-
tions involved. This makes the detection process a delicate
balance: if we detect too few cases, some non-serializable
execution may emerge (counter to our goal of having true
serializability guarantees for the applications), but if we de-
tect too many cases, then performance might suffer as un-
necessary aborts waste resources. As a third factor in de-
signing an algorithm, we also need to keep the overhead cost
of detection low. One can imagine a concurrency control al-
gorithm which aborts a transaction exactly when an opera-
tion will result in a non-serializable execution; this would be
a serialization-graph-testing algorithm (using the appropri-
ate multiversion serialization graph). Serialization-graph-
testing however requires expensive cycle detection calcula-
tions on each operation, and would be very expensive. Thus
we accept a small chance of unnecessary aborts, in order to
keep the detection overhead low.

The key design decision in our new algorithm is thus the
situations in which potential anomalies are detected. We
do this based on the theory of [1] and its extension from [9],
where some distinctive conflict patterns are shown to appear
in every non-serializable execution of SI. The building block
for this theory is the notion of a rw-dependency (also called
an “anti-dependency”), which occurs from T1 to T2 if T1
reads a version of an item x, and T2 produces a version of
x that is later in the version order than the version read
by T1. In [1] it was shown that in any non-serializable SI
execution, there are two rw-dependency edges in a cycle
in the multiversion serialization graph. [9] extended this,
to show that there were two rw-dependency edges which
form consecutive edges in a cycle, and furthermore, each
of these rw-edges involves two transactions that are active
concurrently.

Our proposed serializable SI concurrency control algo-
rithm detects a potential non-serializable execution when-
ever it finds two consecutive rw-dependency edges in the se-
rialization graph, where each of the edges involves two trans-
actions that are active concurrently. Whenever such a situa-
tion is detected, one of the transactions will be aborted. To
support this algorithm, the DBMS maintains, for each trans-
action, two boolean flags: T.inConflict indicates whether
there is an rw-dependency from another concurrent trans-
action to T, and T.outConflict indicates whether there is
an rw-dependency from T to another concurrent transac-
tion. Thus a potential non-serializability is detected when
T.inConflict and T.outConflict are both true.

We note that our algorithm is conservative: if a non-
serializable execution occurs, there will be a transaction with

T.inConflict and T.outConflict. However, we do some-
times make false positive detections; for example, an un-
necessary detection may happen because we do not check
whether the two rw-dependency edges occur within a cycle.
It is also worth mentioning that we do not always abort the
particular pivot transaction T for which T.inConflict and
T.outConflict is true; this is often chosen as the victim,
but sometimes the victim is the transaction that has an rw-
dependency edge to T, or the one that is reached by an edge
from T.

How can we keep track of situations where there is an rw-
dependency between two concurrent transactions? There
are two different ways in which we notice such a dependency.
One situation arises when a transaction T reads a version of
an item x, and the version that it reads (the one which was
valid at T’s start time) is not the most recent version of x.
In this case the writer U of any more recent version of x was
active after T started, and so there is a rw-dependency from
T to U. When we see this, we set the flags T.outConflict

and U.inConflict (and we check for consecutive edges and
abort a transaction if needed). This allows us to find rw-
dependency edges for which the read occurs in real-time after
the write that is logically later. However, it does not account
for edges where the read occurs first, and at a later real-time,
a version is created by a concurrent transaction.

To notice these other rw-dependency cases, we use a lock
management infrastructure. A normal WRITE lock is taken
when a new version is created; note that many SI implemen-
tations do keep such write-locks anyway, as a way to enforce
the First-Committer-Wins rule. We also introduce a new
lock mode called SIREAD. This remembers the fact that an
SI transaction has read a version of an item. However, ob-
taining the SIREAD lock does not cause any blocking, even
if a WRITE lock is held already, and similarly an existing
SIREAD lock does not delay granting of a WRITE lock; in-
stead, the presence of both SIREAD and WRITE locks on
an item is a sign of an rw-dependency, and so we set the
appropriate inConflict and outConflict flags on the transac-
tions which hold the locks. One difficulty, which we discuss
later, is that we need to keep the SIREAD locks that T
obtained, even after T is completed, until all transactions
concurrent with T have completed.

3.1 The Algorithm
We now present in pseudocode the Serializable SI concur-

rency control algorithm.
The main data structure needed by the algorithm is two

boolean flags in each transaction record: T.inConflict in-
dicates whether or not there is a rw-dependency from a
concurrent transaction to T, and T.outConflict indicates
whether there is a rw-dependency from T to a concurrent
transaction. As well, we need a lock manager that keeps
both standard WRITE locks, and also special SIREAD locks.

In describing the algorithm, we make some simplifying
assumptions:

1. For any data item x, we can efficiently get the list of
locks held on x.

2. For any lock l in the system, we can efficiently get
l.owner, the transaction object that requested the lock.

3. For any version xt of a data item in the system, we
can efficiently get xt.creator, the transaction object
that created that version.

modified begin(T):

existing SI code for begin(T)

set T.inConflict = T.outConflict = false

Figure 5: modified begin(T)

modified read(T, x):

get lock(key=x, owner=T, mode=SIREAD)

if there is a WRITE lock(wl) on x

set wl.owner.inConflict = true

set T.outConflict = true

existing SI code for read(T, x)

for each version (xNew) of x

that is newer than what T read:

if xNew.creator is committed

and xNew.creator.outConflict:

abort(T)

return UNSAFE_ERROR

set xNew.creator.inConflict = true

set T.outConflict = true

Figure 6: modified read(T, x)

modified write(T, x, xNew):

get lock(key=x, locker=T, mode=WRITE)

if there is a SIREAD lock(rl) on x

with rl.owner is running

or commit(rl.owner) > begin(T):

if rl.owner is committed

and rl.owner.inConflict:

abort(T)

return UNSAFE_ERROR

set rl.owner.outConflict = true

set T.inConflict = true

existing SI code for write(T, x, xNew)

do not get WRITE lock again

Figure 7: modified write(T, x, xNew)

modified commit(T):

if T.inConflict and T.outConflict:

abort(T)

return UNSAFE_ERROR

existing SI code for commit(T)

release WRITE locks held by T

but do not release SIREAD locks

Figure 8: modified commit(T)

4. When finding a version of item x valid at some given
timestamp, we can efficiently get the list of other ver-
sions of x that have later timestamps.

These assumptions are true for the initial target system
(Berkeley DB). We discuss in section 4.1 how to implement
the algorithm if these assumptions do not hold.

The concurrency control layer processes each operation as
shown in Figures 5 to 8. In each case, the processing includes
the usual processing of the operation by the SI protocol as
well as some extra steps. For simplicity, in this description
we do not show all the cases where we could check whether
to abort T because both T.inConflict and T.outConflict

hold; we have written the check once, in the commit(T) op-
eration, and beyond that we only show the extra cases where
an abort is done for a transaction that is not the pivot (be-
cause the pivot has already committed). In the implemen-
tation, we actually abort an active transaction T as soon as
any operation of T discovers that both T.inConflict and
T.outConflict are true. Likewise, conflicts are not recorded
against transactions that have already aborted or that will
abort due to both flags being set.

When a conflict between two transactions leads to both
conflict flags being set on either one, without loss of correct-
ness either transaction could be aborted in order to break the
cycle and ensure serializability. Our prototype implementa-
tion follows the algorithm as described above, and prefers
to abort the pivot (the transaction with both incoming and
outgoing edges) unless the pivot has already committed. If a
cycle contains two pivots, whichever is detected first will be
aborted. However, for some workloads, it may be preferable
to apply some other policy to the selection of which transac-
tion to abort, analogous to deadlock detection policies. For
example, aborting the younger of the two transactions may
increase the proportion of complex transactions running to
completion. We intend to explore this idea in future work.

For the Serializable SI algorithm, it is important that the
engine have access to information about transaction T (its
transaction record, including inConflict and outConflict, as
well as any SIREAD locks it obtained) even after T has com-
pleted. This information must be kept as long as any trans-
action U is active which overlaps T, that is, we can only re-
move information about T after the end of every transaction
that had already started when T completed. In Section 4
we describe how this information is managed in the Berkeley
DB implementation – in particular, how the space allocated
to transaction objects is reclaimed.

3.2 Correctness
The Serializable SI algorithm ensures that every execu-

tion is serializable, and thus that data integrity is preserved
(under the assumption that each transaction individually is
coded to maintain integrity). This subsection gives the out-
line of the argument that this is so. By Theorem 2.1 from
[9], which shows that in any non-serializable execution there
is a dangerous structure, we are done provided that we can
establish the following: whenever an execution contains a
dangerous structure (transactions TN, a pivot T0, and T1,
such that there is a rw-dependency from TN to T0 and TN is
concurrent with T0, and also there is a rw-dependency from
T0 to T1 and T0 is concurrent with T1), then one of the
transactions is aborted. In this situation, we must consider
the possibility that TN=T1, which is the classic example of
Write Skew.

Our algorithm has an invariant, that whenever the execu-
tion has a rw-dependency from T to U, and the transaction
record for both T and U exists, then T.outConflict and
U.inConflict are both set to true. By definition, the rw-
dependency comes from the existence of a read by T that
sees some version of x, and a write by U which creates a ver-
sion of x that is later in the version order than the version
read by T.

One of these operations (read(T, x) and write(U, x))
will happen first because the database engine will perform
some latching during their execution, and the other will hap-
pen later. The rw-dependency is present in the execution
once the second of these operations occurs. If this second
operation is read(T, x), then at the time that operation
is processed, there will already be the version of x created
by U; the pseudocode in Figure 6 shows that we explic-
itly set both flags as required. On the other hand, if the
write(U, x) occurs after read(T, x), then at that time T
will hold a SIREAD lock on x, and the pseudocode in Fig-
ure 7 shows that both flags are set.

Based on the invariant just described, we now must argue
that one of the transactions in any dangerous structure is
aborted. If both rw-dependencies exist at the time the pivot
T0 completes, then the code in Figure 8 will notice that
T.inConflict and T.outConflict are set (because of the
invariant), and so T will be aborted when it requests to
commit. If, however, one or both rw-dependencies appears
after the pivot has committed, then we look at the first event
in which both dependencies are true; in the pseudocode for
this event, the flag for the other dependency will already
be set in T2’s transaction record, and so the transaction
executing this event will be aborted.

In summary, the argument for correctness is as follows:

1. Non-serializable executions under SI consist of a cycle
including two consecutive rw-dependencies.

2. Our algorithm detects every rw-dependency.

3. When two consecutive rw-dependencies are detected,
at least one transaction is aborted which breaks the
cycle.

The exhaustive testing of the implementation that we de-
scribe below in Section 4.2 further supports this argument
for the algorithm’s correctness.

3.3 False positives
Our algorithm uses a conservative approximation to cycle

detection in the graph of transaction conflicts, and as such
may cause some benign transactions to abort.

In particular, the interleaving of transactions in Figure 9
will set outConflict on T0 when it executes w0(x) and finds
the SIREAD lock from TN. Then inConflict will be set on
T0 when T1 executes w1(y) and finds T0’s SIREAD lock.
During the commit of T0, the two flags will be checked and
since both are set, T0 will abort. However, this interleaving

b0 c0r0(y) w0(x)

w1(y) w1(z)b1 c1rN(x) rN(z)bN cN

Figure 9: False positive: no path from T1 to TN

is equivalent to the serial history {TN, T0, T1} because TN
precedes T1 and hence there is no path of dependencies from
T1 to TN.

The issue is that the two flags we have added to each
transaction cannot indicate anything about the relative or-
dering of the incoming and outgoing conflicts. It may be
possible to reduce the number of false positives by keeping a
reference to the conflicting transactions for each edge rather
than a single bit, but in general a transaction may have mul-
tiple incoming and outgoing edges and it is not clear whether
the overhead of maintaining a more complex data structure
would justify the reduction in false positives.

3.4 Detecting phantoms
As described in section 2.3, a concurrency control algo-

rithm for a relational DBMS must also consider phantoms,
where an item is created in one transaction, and is incor-
rectly not seen in a predicate operation in a concurrent
transaction. The solution used in traditional two-phase lock-
ing is multigranularity locking [6], where a predicate opera-
tion takes intention locks on larger units, such as pages or
tables, to prevent insertion of records that might match the
predicate.

To prevent phantoms in a system with row-level locking
and versioning, the algorithm described here would need to
be extended to take SIREAD locks on larger granules analo-
gously to multigranularity intention locks in traditional two-
phase locking systems. If a conflicting write operation occurs
after the predicate read, this would detect the predicate-rw-
conflict between transactions correctly.

In the case where a predicate read is interleaved after the
conflicting write operation, such a system would find a data
item with a creation or deletion timestamp greater than the
read timestamp of the predicate read. In other words, a row
will be skipped because no version of the row was visible
when the transaction performing the predicate read began
or a row used by the predicate read has since been deleted.
Such rows can be used to detect this kind of conflict as
described in Figure 6 without further modification.

We have not pursued the details in this paper because the
phantom issue does not arise in our prototype implementa-
tion, since Oracle Berkeley DB does all locking and version-
ing at page granularity.

4. IMPLEMENTATION
The algorithm described above was implemented in Or-

acle Berkeley DB version 4.6.21 [16]. Berkeley DB is an
embedded database that supports SI as well as serializable
isolation with S2PL. Locking and multi-version concurrency
control are performed at the granularity of database pages.
This can introduce unnecessary conflicts between concurrent
transactions, but means that straightforward read and write
locking is sufficient to prevent phantoms.

We added the following to Berkeley DB:

1. New error returns DB_SNAPSHOT_CONFLICT, to distin-
guish between deadlocks and update conflicts, and DB_-

SNAPSHOT_UNSAFE, to indicate that committing a trans-
action at SI could lead to a non-serializable execution.

2. A new lock mode, SIREAD that does not conflict with
any other lock modes. In particular, it does not intro-
duce any blocking with conflicting WRITE locks. The

code that previously avoiding locking for snapshot iso-
lation reads was modified to instead get an SIREAD

lock.

3. Code to clean old SIREAD locks from the lock table.
This code finds the earliest read timestamp of all ac-
tive transactions, and removes from the lock table any
locks whose owning transactions have earlier commit
timestamps.

The cleanup code is executed if the lock table becomes
full (a complete sweep of all lock objects), and also
whenever a request for a WRITE lock finds an old SIREAD

lock, in order to spread out the work of cleaning up old
locks.

4. When a WRITE lock request for transaction T finds an
SIREAD lock already held by T, the SIREAD lock is dis-
carded before the WRITE lock is granted. This is done
for two reasons: firstly, whenever possible we would
prefer to return an error indicating an update conflict
if that is the primary cause of the failure. Secondly,
there is no need to hold those SIREAD locks after the
transaction commits: the new version of the data item
that T creates will cause an update conflict with con-
current writers.

Making these changes to Berkeley DB involved only mod-
est changes to the source code. In total, only 692 lines of
code (LOC) were modified out of a total of over 200,000 lines
of code in Berkeley DB. Approximately 40% (276 LOC) of
the changes related to detecting lock conflicts and a further
17% (119 LOC) related to cleaning obsolete locks from the
lock table. Of the code comprising the locking subsystem of
Berkeley DB, 3% of the existing code was modified and the
total size increased by 10%.

4.1 Generalizing to other database engines
In Berkeley DB, it is reasonable for transaction objects

and locks to remain in the system for some time after com-
mit. In fact, transaction objects already have a reference
count for the existing implementation of SI and transaction
objects are deleted when the reference count goes to zero
after the transaction commits.

If this were not the case, we would need to maintain a
table containing the following information: for each trans-
action ID, the begin and commit timestamps together with
an inConflict flag and an outConflict flag. For example:

txnID beginTime commitTime inConf outConf
100 1000 1100 N Y
101 1000 1500 N N
102 1200 N/A Y N

Rows can be removed from the table when the commit
time of a transaction is earlier than the begin times of all
active transactions. In this case, only transaction 102 is still
running (since the commit timestamp is not set). The row
for transaction 100 can be deleted, since it committed before
the only running transaction, 102, began.

Likewise, a table can be constructed to track SIREAD
locks, if the lock manager in the DBMS cannot easily be
modified to keep locks for a transaction after it completes.
Rows in the lock table become obsolete when the owning
transaction becomes obsolete. That is, when all concurrent
transactions have completed.

4.2 Testing
We have also done an exhaustive analysis of the imple-

mentation, by testing it with all possible interleavings of
some set of transactions known to cause write skew anoma-
lies. For example, one test set was as follows:

T1 : b1 r1(x) c1

T2 : b2 r2(y) w2(x) c2

T3 : b3 w3(y) c3

The implementation was tested by generating the test
code, where each test case was a different interleaving of a
given set of transactions. In all cases where the transactions
were executed concurrently, one of the transactions aborted
with the new “unsafe” error return. These results were man-
ually checked to verify that no non-serializable executions
were permitted although all interleavings committed with-
out error at SI.

5. EVALUATION
To evaluate the effects of making SI serializable, we need

a benchmark that is not already serializable under SI. The
SmallBank benchmark [2] was designed to model a sim-
ple banking application involving checking and savings ac-
counts, with transaction types for balance (Bal), deposit-
checking (DC), withdraw-from-checking (WC), transfer-to-
savings (TS) and amalgamate (Amg) operations. Each of
the transaction types involves a small number of simple read
and update operations. The static dependency graph for
SmallBank is given in Figure 10, where the double arrows
represent write-write conflicts and the dashed arrows repre-
sent read-write conflicts. It can be seen by inspection that
there is a dangerous structure Balance → WriteCheck →
TransactSavings → Balance, so the transaction WriteCheck
is a pivot.

5.1 Evaluation Setup
Sullivan [19] designed and implemented a tool called db_perf

that can execute and measure arbitrary workloads against
Berkeley DB. Using db_perf, we simulated the access pat-
terns of the SmallBank benchmark. We compared the built-
in S2PL and SI isolation levels in Berkeley DB with our im-
plementation of the new Serializable SI algorithm.

The five transaction types of SmallBank were executed
use db_perf in a uniform random mix of the different trans-
action types. There was no sleep or think time: each thread

Amg

DC Bal TS

WC

Figure 10: Static dependency graph for the Small-
Bank benchmark

0 5 10 15 20 25 30 35 40 45 50
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

Throughput with short transactions

SI

SSI

S2PL

MPL

T
P

S

(a) Relative throughput of SI, S2PL and Serializable SI with-
out log flushes

S2PL SI Serializable SI

0%

1%

2%

3%

4%

5%

Error ratios with short transactions

unsafe

conflicts

deadlocks

Isolation Level

E
rr

o
r

R
a

te

(b) Relative error rates of SI, S2PL and Serializable SI at
MPL 20 without log flushes

Figure 11: Results without flushing the log during
commit

executed transactions continually, as quickly as Berkeley DB
could process them.

A single set of Berkeley DB binaries were used for all mea-
surements, with parameters to control the isolation level, the
number of threads (the multi-programming level, or MPL),
the data volume, the duration of each run and various Berke-
ley DB parameters such as the page size and deadlock de-
tection policy.

The experiments were run on an AMD Athlon64 3200+
CPU with 1GB RAM running openSUSE Linux 10.2 with
kernel version 2.6.18, glibc version 2.5 and GCC version
4.1.2. All data was stored using the XFS filesystem on a set
of four Western Digital Caviar SE 200 GB SATA hard disks
using software RAID5. All graphs include 95% confidence
intervals.

5.2 Performance with Short Transactions
Results are given in Figure 11 for measurements where

system was configured so that commit operations do not
wait for a physical disk write before completing. This config-
uration is common on high-end storage systems with redun-

dant power sources or in solid state drives based on Flash
memory. A small data size was configured here to model
moderate contention: the savings and checking tables both
consisted of approximately 100 leaf pages. All data fitted in
cache.

In this configuration, transaction durations are very short,
with response times typically under 1ms. When there is no
contention (such as in the MPL=1 case), the CPU was 100%
busy throughout the tests.

It can be seen that in this configuration, Serializable SI
performs significantly better that S2PL (by a factor of 10
at MPL 20). This is due to blocking in S2PL between read
and write operations, and also because the conflicts in S2PL
are found via deadlock detection, which introduces further
delays.

Figure 11(b) shows that Serializable SI has a slightly higher
total rate of aborts than either S2PL or SI at MPL 20. In-
terestingly, a high proportion of errors are reported as “un-
safe” errors rather than update conflicts. This is because in
this benchmark, several transactions execute a read opera-
tion followed by a write. In between those two operations,
a rw-conflict can be detected leading to an unsafe error.

5.3 Performance with Long Transactions
Figure 12 shows results for the same set of experiments,

changing only the commit operations to wait for a physical
write to disk. This significantly increased the duration of
transactions, increasing response times by at least an order
of magnitude to 10-20ms. In this configuration, I/O rather
than the CPU is the bottleneck at MPL 1, and throughput
increases as MPL is increased for all isolation levels, because
increasing numbers of transactions can be committed for
each I/O operation due to group commit.

Up to MPL 5, there is little to separate the three concur-
rency control algorithms, but at MPL 10, the rate of dead-
locks at S2PL begins to have an impact on its throughput.

The error rate at Serializable SI is significantly higher with
longer duration transactions, due to increased number of rw-
conflicts. However, since this test is primarily I/O bound
and transactions are simple, the impact on throughput com-
pared with SI is small.

5.4 Overhead Evaluation
The results so far have concentrated on experiments with

high contention in order to highlight the differences between
the isolation levels. In Figure 13, we present results from
running the benchmark including log flushes with a data set
ten times larger. The increased volume of data results in far
fewer conflicts between transactions but still fits in RAM
so the only I/O operations are log writes. For S2PL, this
produces less blocking and under SI and Serializable SI the
rates of update conflicts are also lower than in the earlier
experiments. In this case, the performance of S2PL and
SI are almost identical and we can see the overhead in the
Serializable SI implementation at between 10-15%.

This overhead is due in part to CPU overhead from man-
aging the larger lock and transaction tables but primarily
to a higher abort rate due to false positives with Serial-
izable SI. One issue in particular contributed to the false
positive rate. As mentioned earlier, Berkeley DB performs
locking and versioning at page-level granularity. As a con-
sequence, our Serializable SI implementation also detects
rw-dependencies at page-level granularity. All of our exper-

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Throughput with long transactions

SI

SSI

serializable

MPL

T
P

S

(a) Relative throughput of SI, S2PL and Serializable SI with
log flushes

S2PL SI Serializable SI

0%

1%

2%

3%

4%

5%

6%

7%

8%

Error ratios with long transactions

unsafe

conflicts

deadlocks

Isolation Level

E
rr

o
r

R
a

te

(b) Relative error rates of SI, S2PL and Serializable SI at
MPL 20 with log flushes

Figure 12: Results when the log is flushed during
commit

0 5 10 15 20 25 30 35 40 45 50
0

250

500

750

1000

1250

1500

1750

2000

2250

Throughput with low contention

SI

SSI

S2PL

MPL

T
P

S

Figure 13: Throughput with low contention

iments use Berkeley DB’s Btree access method, so whenever
any transaction needs to update the Btree root page (for ex-
ample, as a result of a page split), it will register a conflict
with every concurrent transaction, as all transaction types
need to read the root page. With standard SI, concurrent
transactions simply read the older version of the root page,
and with S2PL, concurrent transactions are blocked tem-
porarily but not aborted unless a deadlock occurs. These
conflicts and the resulting higher abort rate would not oc-
cur in a record-level implementation of Serialiazable SI.

6. CONCLUSIONS AND FUTURE WORK
This paper presents a new method for implementing se-

rializable isolation based on a modification of snapshot iso-
lation. A prototype of the algorithm has been implemented
in Oracle Berkeley DB and shown to perform significantly
better that two-phase locking in a variety of cases, and often
comparably with snapshot isolation.

One property of Berkeley DB that simplified our imple-
mentation was working with page level locking and ver-
sioning. In databases that version and lock at row-level
granularity (or finer), additional effort would be required to
avoid phantoms, analogous to standard two phase locking
approaches such as multigranularity locking.

The Serializable SI algorithm is conservative, and in some
cases leads to significantly higher abort rates than SI. One
observation about SI anomalies is that no cycle can exist if
the transaction causing the incoming anomaly precedes the
transaction causing the outgoing anomaly. We intend to in-
vestigate whether this observation can lead to a more effi-
cient version of the algorithm that has fewer false positives.

7. REPEATABILITY ASSESSMENT RESULT
Figures 11a and 13 have been verified by the SIGMOD

repeatability committee. Code and/or data used in the pa-
per are available at http://www.sigmod.org/codearchive/
sigmod2008/.

8. REFERENCES
[1] A. Adya. Weak Consistency: A Generalized Theory

and Optimistic Implementations for Distributed
Transactions (PhD thesis). PhD thesis, Laboratory for
Computer Science, Massachusetts Institute of
Technology, March 1999.

[2] M. Alomari, M. Cahill, A. Fekete, and U. Röhm. The
cost of serializability on platforms that use snapshot
isolation. In ICDE ’08: Proceedings of the 24th
International Conference on Data Engineering, 2008.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, , and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of ACM SIGMOD
International Conference on Management of Data,
pages 1–10. ACM Press, June 1995.

[4] A. Bernstein, P. Lewis, and S. Lu. Semantic conditions
for correctness at different isolation levels. In
Proceedings of IEEE International Conference on
Data Engineering, pages 57–66. IEEE, February 2000.

[5] P. A. Bernstein and N. Goodman. Multiversion
concurrency control - theory and algorithms. ACM
Trans. Database Syst., 8(4):465–483, 1983.

[6] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger.
The notions of consistency and predicate locks in a

database system. Commun. ACM, 19(11):624–633,
1976.

[7] A. Fekete. Serializability and snapshot isolation. In
Proceedings of Australian Database Conference, pages
201–210. Australian Computer Society, January 1999.

[8] A. Fekete. Allocating isolation levels to transactions.
PODS, 2005.

[9] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Transactions on Database Systems, to appear.

[10] A. Fekete, E. O’Neil, and P. O’Neil. A read-only
transaction anomaly under snapshot isolation.
SIGMOD Rec., 33(3):12–14, 2004.

[11] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[12] T. Hadzilacos. Serialization graph algorithms for
multiversion concurrency control. In PODS, pages
135–141, 1988.

[13] K. Jacobs, R. Bamford, G. Doherty, K. Haas, M. Holt,
F. Putzolu, and B. Quigley. Concurrency control,
transaction isolation and serializability in SQL92 and
Oracle7. Oracle White Paper, Part No A33745, 1995.

[14] S. Jorwekar, A. Fekete, K. Ramamritham, and
S. Sudarshan. Automating the detection of snapshot
isolation anomalies. In C. Koch, J. Gehrke, M. N.
Garofalakis, D. Srivastava, K. Aberer, A. Deshpande,
D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne,
W. Klas, and E. J. Neuhold, editors, VLDB, pages
1263–1274. ACM, 2007.

[15] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. In A. L. Furtado and
H. L. Morgan, editors, VLDB, page 351. IEEE
Computer Society, 1979.

[16] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley
DB. In USENIX Annual Technical Conference,
FREENIX Track, pages 183–191, 1999.

[17] Y. Raz. Commitment ordering based distributed
concurrency control for bridging single and multi
version resources. In Proceedings of Third
International Workshop or Research Issues in Data
Engineering: Interoperability in Multidatabase Systems
(RIDE-IMS), pages 189–198. IEEE, June 1993.

[18] V. T.-S. Shi and W. Perrizo. A new method for
concurrency control in centralized database systems. In
R. E. Gantenbein and S. Y. Shin, editors, Computers
and Their Applications, pages 184–187. ISCA, 2002.

[19] D. G. Sullivan. Using probabilistic reasoning to
automate software tuning. PhD thesis, Harvard
University, Cambridge, MA, USA, 2003.
Adviser-Margo I. Seltzer.

[20] Transaction Processing Performance Council. TPC-C
Benchmark Specification. http://www.tpc.org/tpcc,
2005.

[21] Y. Yang. The adaptive serializable snapshot isolation
protocol for managing database transactions. Master’s
thesis, University of Wollongong, NSW Australia, 2007.

http://www.sigmod.org/codearchive/sigmod2008/
http://www.sigmod.org/codearchive/sigmod2008/

	Introduction
	Contributions

	Background
	Snapshot Isolation
	Write Skew
	Phantoms
	Related Work

	Serializable Snapshot Isolation
	The Algorithm
	Correctness
	False positives
	Detecting phantoms

	Implementation
	Generalizing to other database engines
	Testing

	Evaluation
	Evaluation Setup
	Performance with Short Transactions
	Performance with Long Transactions
	Overhead Evaluation

	Conclusions and Future Work
	Repeatability assessment result
	References

